Que es la electricidad?
Que es la energía eléctrica?
Que es la corriente?
Que es la corriente continua?
Que es la corriente alterna?
Que expresa la ley de ohm (Ω)?
Que es la resistencia?
Que es la intensidad?
Que es el voltaje?
La Eléctricidad
Es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática, la inducción electromagnética o el flujo de corriente eléctrica. Es una forma de energía tan versátil que tiene un sinnúmero de aplicaciones, por ejemplo: transporte, climatización, iluminación y computación.[2]
La electricidad se manifiesta mediante varios fenómenos y propiedades físicas:
- Carga eléctrica: una propiedad de algunas partículas subatómicas, que determina su interacción electromagnética. La materia eléctricamente cargada produce y es influida por los campos electromagnéticos.
- Corriente eléctrica: un flujo o desplazamiento de partículas cargadas eléctricamente por un material conductor. Se mide en amperios.
- Campo eléctrico: un tipo de campo electromagnético producido por una carga eléctrica, incluso cuando no se está moviendo. El campo eléctrico produce una fuerza en toda otra carga, menor cuanto mayor sea la distancia que separa las dos cargas. Además, las cargas en movimiento producen campos magnéticos.
- Potencial eléctrico: es la capacidad que tiene un campo eléctrico de realizar trabajo. Se mide en voltios.
- Magnetismo: la corriente eléctrica produce campos magnéticos, y los campos magnéticos variables en el tiempo generan corriente eléctrica.
La electricidad se usa para generar:
- luz, mediante lámparas
- calor, aprovechando el efecto Joule
- movimiento, mediante motores que transforman la energía eléctrica en energía mecánica
- señales, mediante sistemas electrónicos, compuestos de circuitos eléctricos que incluyen componentes activos (tubos de vacío, transistores, diodos y circuitos integrados) y componentes pasivos como resistores, inductores y condensadores.
Energía eléctrica
Se denomina energía eléctrica a la forma de energía que resulta de la existencia de una diferencia de potencial entre dos puntos, lo que permite establecer una corriente eléctrica entre ambos cuando se los pone en contacto por medio de un conductor eléctrico. La energía eléctrica puede transformarse en muchas otras formas de energía, tales como la energía lumínica o luz, la energía mecánica y la energía térmica.
Corriente Electrica
Se conoce como corriente eléctrica al movimiento de cargas eléctricas. La corriente puede estar producida por cualquier partícula cargada eléctricamente en movimiento. Lo más frecuente es que sean electrones, pero cualquier otra carga en movimiento se puede definir como corriente.[49] Según el Sistema Internacional, la intensidad de una corriente eléctrica se mide en amperios, cuyo símbolo es A.[50]
Históricamente, la corriente eléctrica se definió como un flujo de cargas positivas y se fijó como sentido convencional de circulación de la corriente el flujo de cargas desde el polo positivo al negativo. Más adelante se observó que, en los metales, los portadores de carga son electrones, con carga negativa, y que se desplazan en sentido contrario al convencional.[51] Lo cierto es que, dependiendo de las condiciones, una corriente eléctrica puede consistir en un flujo de partículas cargadas en una dirección, o incluso simultáneamente en ambas direcciones. La convención positivo-negativo se usa normalmente para simplificar esta situación.[49]
El proceso por el cual la corriente eléctrica circula por un material se llama conducción eléctrica. Su naturaleza varía, dependiendo de las partículas cargadas y el material por el cual están circulando. Ejemplos de corrientes eléctricas son la conducción metálica, donde los electrones recorren un conductor eléctrico, como un metal; y la electrólisis, donde los iones (átomos cargados) fluyen a través de líquidos. Mientras que las partículas pueden moverse muy despacio, algunas veces con una velocidad media de deriva de solo fracciones de milímetro por segundo,[52] el campo eléctrico que las controla se propaga cercano a la velocidad de la luz, permitiendo que las señales eléctricas se transmitan rápidamente por los cables.[53]
La corriente produce muchos efectos visibles, que han hecho que su presencia se reconozca a lo largo de la historia. En 1800, Nicholson y Carlisle descubrieron que el agua podía descomponerse por la corriente de una pila voltaica, en un proceso que se conoce como electrólisis. En 1833, Michael Faraday amplió este trabajo.[54] En 1840, James Prescott Joule descubrió que la corriente a través de una resistencia eléctrica aumenta la temperatura, fenómeno que en la actualidad se denomina Efecto Joule.[54]
Corriente continua
Corriente eléctrica que circula siempre en la misma dirección
La corriente continua (abreviada CC en español,[1] así como CD por influencia del inglés DC, de direct current) se refiere al flujo continuo de carga eléctrica a través de un conductor entre dos puntos de distinto potencial y carga eléctrica, que no cambia de sentido con el tiempo.[2] A diferencia de la corriente alterna, en la corriente continua las cargas eléctricas circulan siempre en la misma dirección. Aunque comúnmente se identifica la corriente continua con una corriente constante, es continua toda corriente que mantenga siempre la misma polaridad, así disminuya su intensidad conforme se va consumiendo la carga (por ejemplo cuando se descarga una batería eléctrica).
También se dice corriente continua cuando los electrones se mueven siempre en el mismo sentido, el flujo se denomina corriente continua y va (por convenio) del polo positivo al negativo.[3]
Conversión de corriente alterna en continua
Muchos aparatos necesitan corriente continua para funcionar, sobre todos los que llevan electrónica (equipos audiovisuales, ordenadores, etc). Para ello se utilizan fuentes de alimentación que rectifican y convierten la tensión a una adecuada.
Este proceso de rectificación, se realiza mediante dispositivos llamados rectificadores, antiguamente basados en el empleo de tubos de vacío y actualmente, de forma casi general incluso en usos de alta potencia, mediante diodos semiconductores o tiristores.[4]
Polaridad
Generalmente los aparatos de corriente continua no suelen incorporar protecciones frente a un eventual cambio de polaridad, lo que puede acarrear daños irreversibles en el aparato. Para evitarlo, y dado que la causa del problema es la colocación inadecuada de las baterías, es común que los aparatos incorporen un diagrama que muestre cómo deben colocarse; así mismo, los contactos se distinguen empleándose convencionalmente un muelle metálico para el polo negativo y una placa para el polo positivo. En los aparatos con baterías recargables, el transformador - rectificador tiene una salida tal que la conexión con el aparato sólo puede hacerse de una manera, impidiendo así la inversión de la polaridad. En la norma sistemática europea el color negro corresponde al negativo y el rojo al positivo.[5]
En los casos de instalaciones de gran envergadura, por ejemplo, centrales telefónicas y otros equipos de telecomunicación, donde existe una distribución centralizada de corriente continua para toda la sala de equipos se emplean elementos de conexión y protección adecuados para evitar la conexión errónea de polaridad.
Corriente alterna
Corriente eléctrica en la que la magnitud y el sentido varían cíclicamente
Corriente alterna (abreviada CA en español y AC en inglés, de alternating current) se denomina a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente.[1]
Fue ideada por el inventor, ingeniero mecánico, eléctrico y físico Nikola Tesla todas las patentes referentes a esta corriente fueron cedidas por el inventor a Westinghouse para que se continuaran los proyectos con la corriente alterna.
Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las industrias. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.
Corriente alterna frente a corriente continua
La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua.[2] En el caso de la corriente continua, la elevación de la tensión se logra conectando dínamos en serie, lo que no es muy práctico; al contrario, en corriente alterna se cuenta con un dispositivo, el transformador, que permite elevar la tensión de una forma eficiente.[3]
La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, mediante un transformador se puede elevar la tensión hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule y otros efectos asociados al paso de corriente, tales como la histéresis o las corrientes de Foucault. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico y comercial de forma cómoda y segura.
de circuito eléctrico
La ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una ley básica de los circuitos eléctricos. Establece que la diferencia de potencial que aplicamos entre los extremos de un conductor determinado es proporcional a la intensidad de la corriente que circula por el citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica ; que es el factor de proporcionalidad que aparece en la relación entre :
La fórmula anterior se conoce como fórmula general de la ley de Ohm,[1][2] y en la misma, corresponde a la diferencia de potencial, a la resistencia e a la intensidad de la corriente. Las unidades de esas tres magnitudes en el sistema internacional de unidades son, respectivamente, voltios (V), ohmios (Ω) y amperios (A).
En física, el término ley de Ohm se usa para referirse a varias generalizaciones de la ley originalmente formulada por Ohm. El ejemplo más simple es:
donde J es la densidad de corriente en una localización dada en el material resistivo, E es el campo eléctrico en esa localización, y σ (sigma) es un parámetro dependiente del material llamado conductividad. Esta reformulación de la ley de Ohm se debe a Gustav Kirchhoff.[3]
Resistencia eléctrica
Medida física de la oposición al paso de corriente
Se le denomina resistencia eléctrica a la oposición al flujo de electrones al moverse a través de un conductor.[1][2] La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω), en honor al físico alemán Georg Simon Ohm, quien descubrió el principio que ahora lleva su nombre. Para un conductor de tipo cable, la resistencia está dada por la siguiente fórmula:
Donde ρ es el coeficiente de proporcionalidad o la resistividad del material, es la longitud del cable y S el área de la sección transversal del mismo.
La resistencia de un conductor depende directamente de dicho coeficiente, además es directamente proporcional a su longitud (aumenta conforme es mayor su longitud) y es inversamente proporcional a su sección transversal (disminuye conforme aumenta su grosor o sección transversal).
Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual con la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición, en la práctica existen diversos métodos, entre los que se encuentra el uso de un óhmetro. Además, su magnitud recíproca es la conductancia, medida en Siemens.
Por otro lado, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón entre la diferencia de potencial eléctrico y la corriente en que atraviesa dicha resistencia, así:[3][4]
Donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.
También puede decirse que "la intensidad de la corriente que pasa por un conductor es directamente proporcional a la diferencia de potencial e inversamente proporcional a su resistencia"
Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores, aislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.
Corriente eléctrica
Flujo de carga por unidad de tiempo que recorre un material
La corriente eléctrica es el flujo de carga eléctrica que recorre un material.[2] Se debe al movimiento de las cargas (normalmente electrones) en el interior del mismo. Al caudal de corriente (cantidad de carga por unidad de tiempo) se lo denomina intensidad de corriente eléctrica. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio (A). Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.
El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor por el que circula la corriente que se desea medir.
Flujo de carga por unidad de tiempo que recorre un material
La corriente eléctrica es el flujo de carga eléctrica que recorre un material.[2] Se debe al movimiento de las cargas (normalmente electrones) en el interior del mismo. Al caudal de corriente (cantidad de carga por unidad de tiempo) se lo denomina intensidad de corriente eléctrica. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio (A). Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.
El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor por el que circula la corriente que se desea medir.
Tensión (electricidad)
Magnitud física que cuantifica la diferencia de potencial eléctrico entre dos puntos
La tensión eléctrica o diferencia de potencial (también denominada voltaje)[1][2] es una magnitud física que cuantifica la diferencia de potencial eléctrico entre dos puntos. También se puede definir como el trabajo por unidad de carga ejercido por el campo eléctrico sobre una partícula cargada para moverla entre dos posiciones determinadas. Se puede medir con un voltímetro.[3] Su unidad en el Sistema Internacional de Unidades (SI) es el voltio.
La tensión entre dos puntos y es independiente del camino recorrido por la carga y depende exclusivamente del potencial eléctrico de dichos puntos y en el campo eléctrico, que es un campo conservativo.
Si dos puntos que tienen una diferencia de potencial se unen mediante un conductor, se producirá un flujo de electrones. Parte de la carga que crea el punto de mayor potencial se trasladará a través del conductor al punto de menor potencial y, en ausencia de una fuente externa (generador), esta corriente cesará cuando ambos puntos igualen su potencial eléctrico. Este traslado de cargas es lo que se conoce como corriente eléctrica.
Cuando se habla sobre una diferencia de potencial en un sólo punto, o potencial, se refiere a la diferencia de potencial entre este punto y algún otro donde el potencial se defina como cero.
En muchas ocasiones, se adopta como potencia nulo al de la tierra. Este manifiesto se da en la N-P-E
Magnitud física que cuantifica la diferencia de potencial eléctrico entre dos puntos
La tensión eléctrica o diferencia de potencial (también denominada voltaje)[1][2] es una magnitud física que cuantifica la diferencia de potencial eléctrico entre dos puntos. También se puede definir como el trabajo por unidad de carga ejercido por el campo eléctrico sobre una partícula cargada para moverla entre dos posiciones determinadas. Se puede medir con un voltímetro.[3] Su unidad en el Sistema Internacional de Unidades (SI) es el voltio.
La tensión entre dos puntos y es independiente del camino recorrido por la carga y depende exclusivamente del potencial eléctrico de dichos puntos y en el campo eléctrico, que es un campo conservativo.
Si dos puntos que tienen una diferencia de potencial se unen mediante un conductor, se producirá un flujo de electrones. Parte de la carga que crea el punto de mayor potencial se trasladará a través del conductor al punto de menor potencial y, en ausencia de una fuente externa (generador), esta corriente cesará cuando ambos puntos igualen su potencial eléctrico. Este traslado de cargas es lo que se conoce como corriente eléctrica.
Cuando se habla sobre una diferencia de potencial en un sólo punto, o potencial, se refiere a la diferencia de potencial entre este punto y algún otro donde el potencial se defina como cero.
En muchas ocasiones, se adopta como potencia nulo al de la tierra. Este manifiesto se da en la N-P-E
No hay comentarios:
Publicar un comentario