domingo, 15 de julio de 2018

EL PISTÓN (MOTOR DE COMBUSTIÓN INTERNA)

Un pistón es uno de los elementos básicos del motor alternativo, en particular del motor de combustión interna.





Su función principal es la de constituir una pared móvil de la cámara de combustión, transmitiendo la energía de los gases de la combustión al cigüeñal mediante un movimiento alternativo dentro del cilindro. Dicho movimiento se copia en el pie de biela, pero se transforma a lo largo de la biela hasta llegar a su cabeza al muñón del cigüeñal, en donde dicha energía se ve utilizada al movilizar dicho cigüeñal. De esta forma el pistón hace de guía al pie de biela en su movimiento alternativo.


El pistón es una pieza metálica tronco cónica compuesta por tres partes que son: la cabeza, el cuerpo y la pollera o falda. La parte superior o cabeza es la parte más reforzada del mismo ya que se encarga de recibir el empuje de la expansión de los gases dentro del cilindro durante el desarrollo del ciclo.Los pasadores de pistón están hechos de aluminio. Se trata de un émbolo que se ajusta al interior de las paredes del cilindro mediante aros flexibles llamados segmentos o anillos. Efectúa un movimiento alternativo, obligando al fluido que ocupa el cilindro a modificar su presión y volumen o transformando en movimiento el cambio de presión y volumen del fluido. Entre las características que debe reunir se cuentan:
  • Capacidad de soportar las condiciones extremas a las que se ven expuestos.
  • Debe ser ligero para no transmitir excesivas inercias que aumenten las vibraciones del motor.
  • Capacidad de dotar de perfecta estanqueidad al cilindro para así evitar una eventual fuga de gases.
A través de la articulación de biela y cigüeñal, su movimiento alternativo se transforma en rotativo en este último.
Esquema simplificado del movimiento pistón/biela
Puede formar parte de bombascompresores y motores. Se construye normalmente en aleación de aluminio.
Los pistones de motores de combustión interna tienen que soportar grandes temperaturas y presiones, además de velocidades y aceleraciones muy altas. Debido a estos se escogen aleaciones que tengan un peso específico bajo para disminuir la energía cinética que se genera en los desplazamientos. También tienen que soportar los esfuerzos producidos por las velocidades y dilataciones.

Partes del Pistón 




  • Cabeza: Parte superior del pistón cuya cara superior (Cielo) está en contacto permanente con todas las fases del fluido: Admisión, compresión, combustión y consecuente expansión y escape. Para permitir las dilataciones producidas por el aumento de temperatura la cabeza es de menor tamaño, alcanzando su menor diámetro en el cielo. Según sean las necesidades del motor, la parte superior puede adoptar diversas formas
  • Cielo: Superficie superior de la cabeza contra la cual ejercen presión los gases de la combustión. Puede ser plana, cóncava, convexa, tener labrados conductos toroidales, deflectores para crear turbulencia, etc. Generalmente posee menor diámetro que el extremo inferior del pistón debido a que se tiene que prever que al estar en contacto con las temperaturas más altas de todo el motor va a existir una cierta dilatación en el pistón, consistente en un cierto ensanchamiento en su sector superior -es decir, en su cabeza- y por esta razón el pistón adopta una forma tronco cónica con su menor diámetro en su superficie superior.
  • Alojamiento porta-aros: Son canales asignados a lo largo de la circunferencia del pistón, destinados a alojar los anillos. Los canales para los anillos rasca-aceite poseen orificios en el fondo para permitir el paso del aceite lubricante.
  • Paredes entre canaletas: las partes de la región de los anillos que separan dos canales entre sí.
  • Falda o pollera: Parte del pistón comprendida entre el centro del orificio del perno y el extremo inferior del pistón. Forma una superficie de deslizamiento y guía al pistón dentro del cilindro. Las faldas son de hierro fundido, y se la une a la corona mediante soldaduras o por embutimiento. En motores Diesel las faldas pueden formar una sola pieza con la cabeza, y en motores grandes se suelen usar faldas no integrales. Las faldas del pistón suelen ser de tipo planas o lisas, acanaladas o partidas o también del tipo arrugado. Esto sirve para contrarrestar la dilatación o para mejorar la lubricación. Las faldas o ranuras permitan la expansión del metal sin aumento de diámetro. Una particularidad interesante de las faldas arrugadas es que tienen microfisuras en las cuales se transporta aceite, lo cual mejora considerablemente la lubricación y por ende alarga el tiempo de vida útil del pistón. El juego entre la falda y la superficie del cilindro debe ser los más reducido posible para evitar el cabeceo del pistón. Para facilitar el deslizamiento y agarrotamiento del pistón en muchas faldas se coloca una protección que consta de una capa de metales antifricción tales como plomo, cadmio, zinc o estaño.
  • Orificio para perno del pistón: es el orificio situado en la falda que aloja al perno, los pernos del pistón son piezas cilíndricas de acero al carbono, tratadas térmicamente que sirven de articulación entre el pistón y la biela. Cuando el perno está libre tanto en el pistón como en la biela, se debe evitar el desplazamiento axial (Es decir, hacia los costados) del mismo, para lo cual se realizan unas ranuras en el borde de cada orificio y en dichas ranuras de montan anillos elásticos que constituyen un tope al movimiento axial del perno.
  • Perno del pistón: Es un pasador tubular construido en acero al 4% de carbono. Tiene tres formas posibles de fijación entre el pistón y la biela:
  • Fijo a la biela y loco en el pistón: En este tipo de anclaje el pasador del pistón queda fijo (Sin movimiento radial respecto del pie de biela) en la biela y libre en el pistón. Este tipo de anclaje permite al pistón bascular sobre el pasador, para que pueda adoptar en su desplazamiento las posiciones adecuadas con respecto a la biela.
  • Loco en la biela y fijo en el pistón: En este anclaje el perno queda fijo al pistón mediante una chaveta o tornillo pasador, mediante la biela bascula libremente sobre el perno. La unión biela-perno se realiza mediante un cojinete antifricción.
  • Loco tanto en la biela como en el pistón: En este tipo de anclaje el perno queda libre tanto respecto del pistón como de la biela, con lo cual ambos elementos bascular libremente teniendo además la ventaja adicional de repartir las cargas y disminuir el desgaste por rozamiento. El perno se monta en el pistón en frío con una ligera presión de modo que al dilatarse queda libre.
  • Aros o segmentos: Son piezas circulares que se adaptan a la circunferencia del émbolo o pistón a una ranura practicada en el cuerpo del mismo y cumplen determinadas funciones, entre las cuales se cuentan asegurar la hermeticidad de la cámara de combustión, transmitir calor a las paredes del cilindro, y controlar la lubricación de las paredes internas de dicho cilindro.
Un segmentoaro de pistón o anillo de pistón es un aro de metal con una abertura que calza en una ranura que recorre la superficie exterior de un pistón en un motor alternativo tal como un motor de combustión interna o una máquina de vapor.
Las tres funciones principales de los segmentos en motores con movimiento recíproco son:
  1. Sellar la cámara de combustión/expansión.
  2. Colaborar en la transferencia de calor desde el pistón a la pared del cilindro.
  3. Regular el consumo de aceite del motor.​
La holgura entre el aro del pistón y el agujero del cilindro es de unas pocas milésimas de centímetro.





Parámetros influyentes del Pistón

Relación de compresión:
Se define como Relación de Compresión a la relación volumétrica existente entre el volumen total de la cámara de combustión (Con el pistón en su PMI) más el volumen mínimo de la cámara de combustión, dividido sobre el volumen mínimo de la susodicha cámara de combustión. La relación de compresión en motores Diesel (Que dependen de dicha relación para lograr una combustión exitosa) es de 16:1 a 18:1, frente a los motores Otto, que son mucho menores, con relaciones que van desde 7:1 a 12:1.
Diámetro
Distancia máxima entre 2 puntos de la circunferencia mayor del cilindro.
Carrera:
Distancia que recorre el pistón en su movimiento alternativo, medida entre su punto más bajo y el más alto del recorrido.
Cilindrada:
Este valor depende del diámetro, carrera y número de cilindros. A priori, cuanto mayor sea la cilindrada de un motor, más robusto será, y menor número de revoluciones necesitará para conseguir la potencia deseada, como así también será más duradero el motor. Por otro lado el precio se ve aumentado.
Velocidad media del pistón:
Se define por la siguiente expresión:
                        Vl= (Rpm*2*L)/60 seg
Siendo:
Vl: Velocidad lineal en m/s (metros por segundo)
Rpm: Revoluciones por minuto
L: Distancia recorrida en metros (Carrera)

No hay comentarios:

Publicar un comentario